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ABSTRACT
The mercury(II)-mediated electrophilic ring-opening reaction of
various cyclopropylcarbinol derivatives bearing adjacent stereo-
centers and a remote nucleophilic functional group provides a
useful strategy for synthesizing compounds bearing several con-
tiguous stereocenters. These highly diastereoselective reactions
occur with anchimeric assistance by the internal nucleophilic
moiety and afford synthetically valuable building blocks such as
polypropionate units or heterocyclic compounds. The application
of cyclopropylcarbinol ring-opening for the preparation of func-
tionalized oxygen heterocycles in natural product synthesis is also
outlined.

Introduction
Although the nucleophilicity of the carbon-carbon bond
of cyclopropanes has been well described theoretically and
experimentally for more than 100 years,1 the most syn-
thetically useful three-membered ring scissions promoted

by electrophilic species have usually involved cyclopro-
pylcarbinyl cations or related species,1 cyclopropanes
activated by electron-donating groups,2,3 and electrocyclic
cleavage of dihalocyclopropanes.4 Even if cyclopropanes
are much less nucleophilic than alkenes, they can react
with electrophiles such as a proton,5,6 halogens,7 and
transition2c,2e,8 or nontransition metal salts such as lead-
(IV),9 thallium(III),9c,10 and mercury(II).2b,3f,10c,11-18 The
mechanism of the electrophilic ring-opening has been
investigated and was demonstrated to involve a ste-
reospecific “edge attack” for reagents capable of back-
donation [halogens, Pd(II), Pt(II), ...], whereas the alter-
native “corner opening” mechanism was observed for
poor back-donors [H+, Hg(II) and Tl(III) salts]. In both
cases, the observed stereo- and regioselectivities are
consistent with a scenario involving backside attack of the
nucleophile at the carbon best able to stabilize a positive
charge (Scheme 1).5-18

Whereas a lot of investigations have focused on the
understanding of the cyclopropane electrophilic ring-
opening mechanism, few of them have been devoted to
the synthetic application of these reactions. The develop-
ment of stereocontrolled cyclopropanations promoted or
catalyzed by various metals19 has led to a renewed interest
in cyclopropane ring-openings, as they would indeed
represent a powerful strategy for the elaboration of several
contiguous stereogenic centers. One of the major break-
through in this field is a report dealing with the oxymer-
curation of cyclopropylcarbinols.12 Thus, cyclopropyl-
carbinols of type A were reported to undergo highly
regioselective (>250:1) electrophilic ring-opening reactions
when treated with mercuric trifluoroacetate, presumably
controlled by the negative inductive effect of the hydroxy-
alkyl substituent, with concomitant highly stereoselective
anti nucleophilic attack of the trifluoroacetate counter-
anion (>70:1). After treatment with a saturated aqueous
solution of NaCl and reductive demercuration of the
resulting organomercuric chlorides of type B with LiAlH4,20

2-methyl-1,3-diols of type C were obtained (Scheme 2).
Mercuric trifluoroacetate was found to be the most
convenient mercuric salt in these transformations due to
its high solubility in nonpolar organic solvents. Indeed,
polar solvents which may compete with the substrate in
ligating the mercury cation resulted in longer reaction
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times.12 Nevertheless, oxymercuration of cyclopropane
derivatives can also be carried out in protic solvents
(MeOH, BnOH, AcOH, ...) which directly act as nucleo-
philes and are therefore incorporated in the final
product.11-16

Besides reductive demercuration,20 the carbon-mer-
cury bond of organomercuric halides may be involved in
a wide variety of subsequent transformations.21 Other
related processes involve oxidation with molecular oxy-
gen22 and radical-chain alkylations.23 Organomercuric
compounds can be transmetalated to organocopper re-
agents24 and Kocovsky demonstrated the synthetic utility
of several organomercurial cuprations coupled with sub-
sequent intramolecular 1,2-additions to carbonyl com-
pounds and 1,4-additions to Michael acceptors.10c,13 Or-
ganomercuric halides can be transmetalated to organo-
palladium14 or organorhodium25 intermediates, and these
transformations are of great synthetic value when used
in conjunction with carbonylations. Therefore, the oxymer-
curation of cyclopropanes coupled with subsequent trans-
formations of the intermediate organomercuric com-
pounds nicely complement epoxide ring-opening with
carbon nucleophiles, as both effect the addition of oxygen
and carbon containing units across a carbon-carbon
double bond.26

When the oxymercuration-reductive demercuration
sequence was applied to a cyclopropylcarbinol bearing a
homocyclopropylic oxygen atom, complex product mix-
tures were obtained in the case of the free alcohol 1a and
the tert-butyldiphenylsilyl ether 1b. On the contrary, for
substrate 1c having the remote alcohol moiety protected
as an acetate, compound 2c was obtained in moderate
yield (40%) as a 19:1 diastereomeric mixture. Although an
internal participation of the carbonyl group of the acetate
was suggested, its critical role in the oxymercuration step
remained unclarified. Furthermore, the structural assign-
ment of the resulting final product 2c was ambiguous
since the remote acetate group had apparently surprisingly
survived during the LiAlH4-promoted reductive demer-
curation step (Scheme 3).12

An interesting extension of the oxymercuration to
bicyclopropane arrays was reported by Barrett.16 Although

the bicyclopropanedimethanol 3 reacted rapidly with
mercuric trifluoroacetate in the presence of methanol, a
mono ring-opening reaction leading to 4 occurred with
essentially no diastereoselectivity. This result was ex-
plained by the ability of the second cyclopropane to
stabilize the adjacent developing carbocation which is
further trapped by methanol in a stereorandom fashion.
Furthermore, the oxymercuration did not readily proceed
further due to the fact that the cyclopropane in compound
4 became deactivated by the negative inductive effect of
the two adjacent oxygenated moieties (Scheme 4).

Synthesis of Polypropionate Units from
Cyclopropylcarbinol Derivatives
Since the cyclopropane could be regarded as an equivalent
of a methyl-hydroxyl array whose relative configuration
is controlled by the initial stereogenic centers of the three-
membered ring, the oxymercuration-reductive demer-
curation of cyclopropylcarbinol derivatives of type D was
investigated, with the aim of synthesizing polypropionate
units of type E. The remote homocyclopropylic oxygen
atom of the cyclopropanes of type D was protected as an
acetate or a pivalate (R2 ) Ac or Piv) and the hydroxyl
group of the cyclopropylcarbinol could be unprotected or
protected as a benzyl ether (R3 ) H or Bn) (Scheme 5).27,28

The crucial role of the ester protecting group for the
remote homocyclopropylic oxygen atom was demon-
strated in the case of the racemic cyclopropanemethanol
5. Indeed, this compound reacted rapidly with mercuric
trifluoroacetate, and after treatment with KBr, the orga-
nomercuric bromides 6a and an inseparable mixture
of 6b and 6c (80/20 ratio) were isolated in 60% and
20% yields, respectively. Reductive demercuration with
n-Bu3SnH and a catalytic amount of AIBN in THF20

converted the organomercuric 6a to the stereotriad 7
(96%), whereas the 6b/6c mixture was converted to the
same stereotriad 8 (92%). It is worth noting that when the
pivaloyl group in compound 5 was replaced by a p-
methoxybenzyl ether, the oxymercuration failed despite
extended reaction times (Scheme 6).27

Scheme 2

Scheme 3

Scheme 4

Scheme 5
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Thus, organomercuric bromides 6a-c and stereotriads
7 and 8 all share the same stereochemical information,
as they only differ by the positioning of the ester group.
This result further highlights the dramatic influence of the
remote ester moiety in the oxymercuration reaction. A
reasonable mechanistic pathway involves an anchimeri-
cally assisted oxymercuration by the carbonyl group of
the ester moiety, proceeding with inversion of configu-
ration at C3 and leading to a dioxacarbenium type
intermediate 9. Upon hydrolysis in the presence of KBr,
this intermediate would generate the corresponding re-
gioisomeric organomercuric bromides 6a and 6b. To
explain the formation of the minor organomercuric bro-
mide 6c, the intermediacy of a bicyclic ortho ester 10
could also be envisaged,29 and its subsequent hydrolysis
would generate a mixture of the three organomercuric
bromides 6a-c. Apparently, products that would have
resulted from an oxymercuration proceeding with reten-
tion of configuration (hydrolysis products derived from
intermediate 11) were not observed (Scheme 7).27

Although the possibility of synthesizing stereotriads
from cyclopropanemethanols of type D (R3 ) H) was
demonstrated, regioisomeric mixture of products were
obtained. To circumvent this drawback and synthesize
polypropionate units from cyclopropanes of type D having
the hydroxyl groups differentiated, the same sequence was
investigated starting from the corresponding substrates
protected as benzyl ethers (R3 ) Bn). Following the
oxymercuration-reductive demercuration reaction, the
regioisomeric mixtures of pivalates of type F and F′ were
subsequently converted to a single polypropionate unit
of type E by reduction with LiAlH4 (Scheme 8).

Several cyclopropanemethanols protected as benzyl
ethers were therefore subjected to this three-step se-
quence, and the results are listed in Table 1. The corre-
sponding polypropionate units were obtained as single
diastereomers (25-65% overall yield), arising from an
anchimerically assisted oxymercuration (by the carbonyl
of the ester protecting group of the homocyclopropylic
oxygen atom) proceeding with inversion of configuration
at the stereocenter bearing the newly introduced oxygen-
ated moiety.27,30

Synthesis of Heterocycles by Mercury-
(II)-Mediated Cyclofunctionalization of
Cyclopropylcarbinols
Two different approaches have been considered for the
elaboration of heterocyclic compounds relying on the
electrophilic ring-opening of cyclopropane derivatives
with mercury(II) salts. According to a first approach, a
standard intermolecular oxymercuration of the three-
membered ring is initially carried out and the resulting
organomercuric intermediate subsequently subjected to
further synthetic manipulations, leading to the heterocy-
clic structure. This strategy is illustrated by the transfor-
mation of the organomercuric chloride 13, resulting from
the oxymercuration of 12, to the trans-lactone 14 (63%)
by carbonylation with carbon monoxide in the presence
of a catalytic amount of a palladium(II) complex and
p-benzoquinone as the reoxidant (Scheme 9).14a Interest-
ingly, methylation of 13 with methylcopper gave a dialkyl-
organomercuric derivative which is stable to a number
of reducing agent. Therefore, the relative configuration of
the secondary alcohol could be inverted by an oxidation-
stereoselective reduction and the organomercuric chloride

Scheme 6 Scheme 7

Scheme 8
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regenerated by addition of HgCl2 to afford the corre-
sponding epimeric compound 15. Upon subsequent pal-
ladium-catalyzed carbonylation reaction, the cis-lactone
16 was obtained (58%) (Scheme 9).14b

A second approach relies on the anchimeric assistance
by a suitably located remote heteroatom containing
functional group in the mercuration of cyclopropanes and
constitutes a powerful way of synthesizing hetero-
cycles.16,17 Indeed, several mercury-mediated lactoniza-
tions of cyclopropane acid derivatives have been reported
and the inherent regio- and stereoselectivities of these
reactions have been studied. Thus, the cyclopropane 17
bearing a remote carboxylic acid functionality could be
converted to a diastereomeric mixture of lactones 18a and

18b by treatment with a mercury(II) salt and subsequent
reductive demercuration. The corresponding sodium car-
boxylate or methyl ester derived from compound 17 also
cyclized analogously and the observed stereoselectivities
ranged from 3:1 up to 100:1 (inversion/retention ratio),
depending on the substrates and the reaction conditions.
However, for the electronically less-biased substrate 19,
regioisomeric mixtures of γ- and δ-lactones 20 and 21 (1:8
to 1:12 ratio) were respectively obtained with complete
diastereoselectivity (inversion of configuration in each
case) (Scheme 10).17a

Similarly, substituted tetrahydrofurans 23 and 25 have
been synthesized by mercury(II)-mediated cyclizations
with hydroxy groups acting as internal nucleophiles in the
case of cyclopropanes 22 and 24 (Scheme 11).16,17b

These reactions nicely complement the related elec-
trophile-mediated cyclofunctionalizations of alkenes, or
intramolecular ring-opening of epoxides for the synthesis
of oxygen heterocycles.31 Whereas the intramolecular oxy-
mercuration of alkenes or related unsaturated compounds
have been used to synthesize oxygen heterocycles and
especially those encountered in some naturally occurring
ionophores,32 the corresponding reaction with cyclopro-
panes has received much less attention to our knowledge
in the context of natural product synthesis. To further
demonstrate the synthetic utility of these mercury-medi-
ated cyclizations, the formation of heterocyclic com-
pounds starting from several cyclopropanemethanol
derivatives bearing at least one adjacent stereocenter

Table 1

a Hg(OCOCF3)2, CH2Cl2, rt, then aq KBr. b n-Bu3SnH, cat AlBN,
THF, rt, or THF/toluene, 60 °C. c LiAlH4, THF, 0 °C to room
temperature.

Scheme 9

Scheme 10

Scheme 11
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substituted by a methyl group and a remote nucleo-
philic moiety was investigated. The results are listed in
Table 2.30

As anticipated, lactones 31 and 32 and tetrahydropy-
rans 33-35 could be synthesized from cyclopropanemeth-
anols 26-30 (or their benzyl ethers) possessing appro-
priately located ester or hydroxy groups. A benzyl ether
can also act as an internal nucleophile, as illustrated in
the case of compound 29, and is transferred to the
remaining hydroxyl group of the final product 34 during
the oxymercuration process, presumably from the inter-
mediate oxonium species 36 (Scheme 12).30

Finally, the mercury(II)-mediated cyclization can be
applied to densely functionalized substrates such as 30,
with an hydroxyl group of a potentially sensitive aldol-
type compound acting as the internal nucleophile. The
corresponding tetrahydropyran 35 was obtained in excel-
lent yield (84%) and with high diastereoselectivity (d.r.

> 96/4). The other carbonyl groups in compound 30,
which offer potential ligation sites for the mercury cation,
did not interfere with the intramolecular oxymercuration
(Table 2).

An intramolecular oxymercuration of the highly func-
tionalized cyclopropanemethanol 37 has been used as a
key step for the elaboration of the C1-C9 subunit in our
total synthesis of the ionophore antibiotic zincophorin.
The resulting tetrahydropyran 38 was obtained in excellent
yield (85%) and with a satisfactory level of diastereose-
lectivity (d.r. g 93/7) (Scheme 13).33

Interestingly, these processes are not restricted to
oxygen nucleophiles since the nitrogen atom of the amide
group of the cyclopropane 39 could be used in order to
elaborate the pyrrolidine 40 (70%). Worthy of note is the
fact that this intramolecular aminomercuration proceeded
with high regioselectivity favoring the formation of a five-
membered ring at the expense of a six-membered ring,
as an obvious consequence of the electronic bias provided
by the cyclopropanemethanol (Scheme 14).30

Conclusion
The regioselective electrophilic ring-opening of cyclopro-
pylcarbinol derivatives mediated by mercury(II) salts with
concomitant attack of an internal nucleophile provides a
useful strategy for the stereoselective elaboration of acyclic
structures bearing several contiguous stereocenters, as
well as heterocycles. Although the use of mercury salts
limits the development of these reactions to academic
research activities, the results presented in this account
should encourage the search for alternative mediators to
effect these transformations. The scope of the electrophilic
ring-opening of cyclopropanes mediated by mercury(II)
salts has been further expanded through the course of
these studies, by considering the case of cyclopropanemeth-
anol derivatives bearing an adjacent methyl substituted

Table 2

a Hg(OCOCF3)2, CH2Cl2, rt, then aq KBr. b n-Bu3SnH, cat AlBN,
THF.

Scheme 12

Scheme 13

Scheme 14
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stereocenter for which efficient stereoselective syntheses
have been devised. The potential application to complex
natural product synthesis has also been highlighted with
the elaboration of the C1-C9 subunit of zincophorin
relying on an intramolecular oxymercuration of a cyclo-
propanemethanol as a key step.
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